The Federal Reserve AND Market Confidence

Nina Boyarchenko, Valentin Haddad, and Matthew C. Plosser

Federal Reserve Bank of New York, CEPR, and UCLA Anderson

The views expressed here are those of the authors and do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System

The Federal Reserve and Asset Prices

What is the effect of the Fed's communication on asset prices?

- Standard monetary policy: set interest rate
- Other aspects: policy approach, assessment of the economy

The Federal Reserve and Asset Prices

What is the effect of the Fed's communication on asset prices?

- Standard monetary policy: set interest rate
- Other aspects: policy approach, assessment of the economy

 \rightarrow This paper:

- Empirical design allowing for a *broad view* of communication
- "Other" matters a lot, distinct pattern: market confidence

WHAT WE DO

Take a **broad** view of the yield curve to characterize policy shocks

- All maturities
- Leave markets time to process the communication

Use response in other markets to shed light on the nature of the shocks

WHAT WE FIND

Take a broad view of the yield curve to characterize policy shocks

- Yield curve more volatile around FOMC announcements than usual
- Two policy shocks:
 - $\blacktriangleright~1/3$ regular monetary policy shock
 - ▶ 2/3 market confidence shock: flat shift across *all longer* maturities

Use response in other markets to shed light on the nature of the shocks

WHAT WE FIND

Take a broad view of the yield curve to characterize policy shocks

- Yield curve more volatile around FOMC announcements than usual
- Two policy shocks:
 - $\blacktriangleright~1/3$ regular monetary policy shock
 - ▶ 2/3 market confidence shock: flat shift across *all longer* maturities

Use response in other markets to shed light on the nature of the shocks

A decrease in market confidence is related to:

- Increase in long term real rates, not inflation
- Low stock returns
- Increase in uncertainty
- Credit markets: negative quantity and price effects

WHAT WE FIND

Take a broad view of the yield curve to characterize policy shocks

- Yield curve more volatile around FOMC announcements than usual
- Two policy shocks:
 - $\blacktriangleright~1/3$ regular monetary policy shock
 - ▶ 2/3 market confidence shock: flat shift across *all longer* maturities

Use response in other markets to shed light on the nature of the shocks

A decrease in market confidence is related to:

- Increase in long term real rates, not inflation
- Low stock returns
- Increase in uncertainty
- Credit markets: negative quantity and price effects

→ Communication has a large impact on financial markets, but not through changes in short rate

Related Literature

Using asset prices to identify monetary policy shocks

- Rudebusch 1998, Kuttner 2001, Rigobon 2003, Rigobon and Sack 2004, Gurkanyak et al.
 2005, Nakamura and Steinsson 2015, Schmeling and Wagner 2016, Leombroni et al. 2016, ...
- Measuring the impact of monetary policy on asset prices
 - Bernanke and Kuttner 2005, Piazzesi 2005, Gertler and Keradi 2015, Hanson and Stein 2015, Gilchrist et al. 2015, Ozdagli et al. 2016, ...

Federal Reserve communication beyond conventional monetary policy

▶ Barro 1986, Romer and Romer 2000, Morris and Shin 2002, Ang et al. 2011, ...

IDENTIFICATION STRATEGY

- Fed communication happens at discrete points in time: after FOMC meetings
 - ▶ Main sample: 1994-2007, 113 FOMC announcements
 - ▶ 2-day returns, to allow information to percolate
- Does the yield curve move differently around announcements?

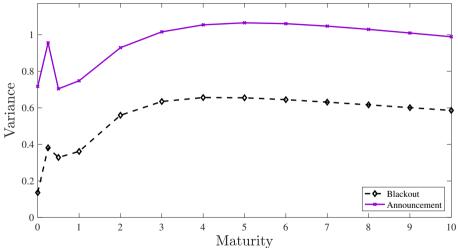
IDENTIFICATION STRATEGY

- Fed communication happens at discrete points in time: after FOMC meetings
 - ▶ Main sample: 1994-2007, 113 FOMC announcements
 - ▶ 2-day returns, to allow information to percolate
- Does the yield curve move differently around announcements?

- ▶ Assumption 1: No policy shocks on "blackout" days
- Assumption 2: Same variance of regular shocks on announcement and non-announcement days

IDENTIFICATION STRATEGY

- Fed communication happens at discrete points in time: after FOMC meetings
 - ▶ Main sample: 1994-2007, 113 FOMC announcements
 - ▶ 2-day returns, to allow information to percolate
- Does the yield curve move differently around announcements?



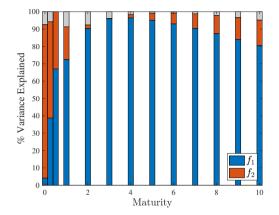
- ► Assumption 1: No policy shocks on "blackout" days
- Assumption 2: Same variance of regular shocks on announcement and non-announcement days

 \blacktriangleright Cannot observe individual realizations of policy shocks $\varepsilon_t^{(n)}$

EXCESS VARIANCE IN THE YIELD CURVE

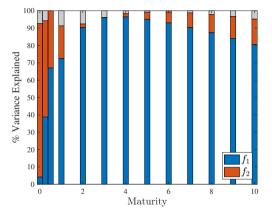
Instantaneous rate: construct Fed Fund surprises (Kuttner 2001)

Recovering Policy Shocks


• Excess variation due to policy $\varepsilon_t^{(FF)}, \varepsilon_t^{(3m)}, ... \varepsilon_t^{(10y)} \text{ likely due to a}$ few underlying policy shocks

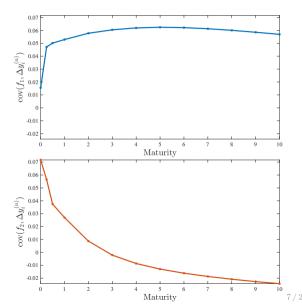
 \blacksquare PCA of variance-covariance matrix Σ_{ε}

Recovering Policy Shocks


- Excess variation due to policy $\varepsilon_t^{(FF)}, \varepsilon_t^{(3m)}, \dots \varepsilon_t^{(10y)}$ likely due to a few underlying policy shocks
- \blacksquare PCA of variance-covariance matrix Σ_{ε}
- Two factors explain 93% of the variance

Recovering Policy Shocks

- Excess variation due to policy $\varepsilon_t^{(FF)}, \varepsilon_t^{(3m)}, \ldots \varepsilon_t^{(10y)}$ likely due to a few underlying policy shocks
- PCA of variance-covariance matrix Σ_{ε}
- Two factors explain 93% of the variance



Factor realizations $f_{j,t} = \sum_n \omega_{j,n} \varepsilon_t^{(n)}$ cannot be observed, only contaminated $\tilde{f}_{i,t} = \sum_n \omega_{j,n} \Delta y_t^{(n)}$

The Two Policy Shocks

• Market confidence f_1 (59%)

Standard monetary policy f_2 (34%)

Confidence vs Path Shock

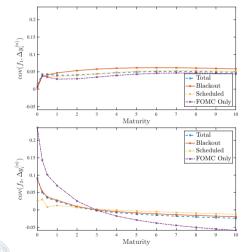
- Gurkaynak et al. (2005): multifactor policy surprise, Fed Funds shock and a longer-maturity "path" shock
 - ▶ Path shock reflects market expectations for the stance of policy factor over the next year
- Confidence and path shocks positively correlated but...
 - \blacktriangleright *R*-squared between the two factors only about 20%
 - ▶ Many instances with significant deviations between the two, with different signs
- E.g.: April 12, 2003
 - ▶ Negative path shock, positive (and twice as large) confidence shock
 - ▶ FOMC added language about interest rates remaining low for "considerable period of time"

▶ News commentary: bond sell-off due to growing uncertainty about economy and Fed policy

Confidence vs Path Shock

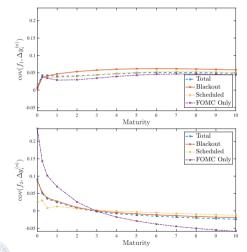
- Gurkaynak et al. (2005): multifactor policy surprise, Fed Funds shock and a longer-maturity "path" shock
 - ▶ Path shock reflects market expectations for the stance of policy factor over the next year
- Confidence and path shocks positively correlated but...
 - ▶ R-squared between the two factors only about 20%
 - ▶ Many instances with significant deviations between the two, with different signs
- E.g.: September 25, 1996
 - ▶ No change in path shock, significant decline in confidence shock
 - Reporting after close revealed the Chairman appeared to have greater control over future rates despite dissent by hawks

▶ Reduced expectations of future rate increases and resolved some policy uncertainty

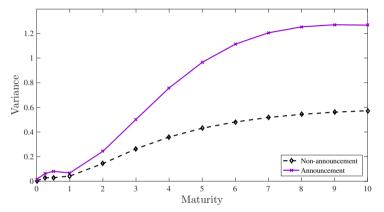

Confidence vs Path Shock

- Gurkaynak et al. (2005): multifactor policy surprise, Fed Funds shock and a longer-maturity "path" shock
 - ▶ Path shock reflects market expectations for the stance of policy factor over the next year
- Confidence and path shocks positively correlated but...
 - \blacktriangleright *R*-squared between the two factors only about 20%
 - ▶ Many instances with significant deviations between the two, with different signs
- Generally, variation day after the announcement related to
 - Additional information
 - Analysis related to monetary policy announcement

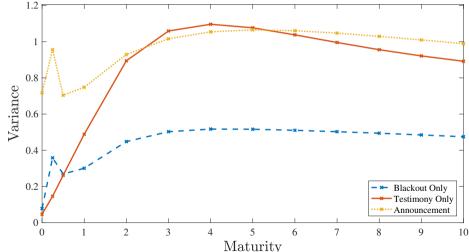
⇒ Market needs time to process non-rate information


Robustness

- Policy news beyond announcements: all non-announcement days
- Different regular news on announcements: scheduled FOMC meetings only, no other macro news


Robustness

- Policy news beyond announcements: all non-announcement days
- Different regular news on announcements: scheduled FOMC meetings only, no other macro news
- Standard monetary policy shock not specific to Fed Funds rate: also present in OIS rates, longer maturity Fed Funds futures, ...



POST-CRISIS: 2010-2016

- Zero lower bound: no standard monetary policy shock
- Larger market confidence shock than pre-crisis

TESTIMONIES

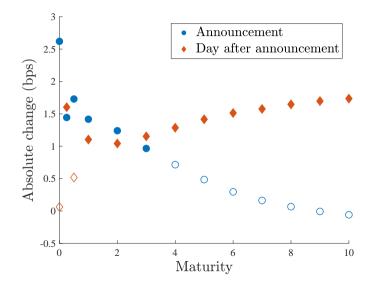
About twice a year, the Fed Chair testifies in front of Congress

Importance of the Broad View

- Study entire yield curve simultaneously
 - Impact on long-term rates
 - ▶ Multiplicity of shocks: not everything must flow through short rate
- Allow two days to measure impact of the announcement
 - ▶ Time to react to announcement: learning (individual and social), and decision-making
 - Immediate jump satisfies perfectly exclusion restriction but:
 - $\star\,$ Does not rule out that there could be a longer reaction (e.g. earnings announcements)
 - * Does not constitute a valid instrument* if multiple components to the announcement respond at different frequencies

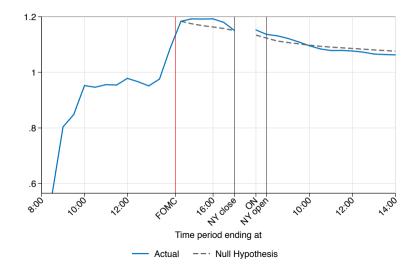
How Quickly Does the Market Interpret? Example: Aug 12, 2003 FOMC meeting

- No change in target
- No FF surprise
- On Aug 13: yield on 2-years declined 6/32 to 1.825%; yield on 5-years declined 21/32 to 3.43%; yield on 30 years declined 1 18/32 to 5.465%

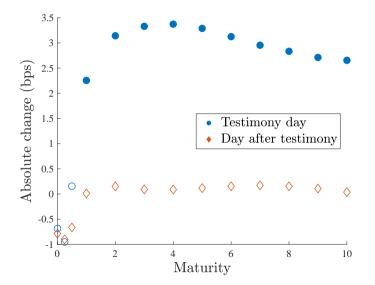

BOND REPORT

Treasurys take a plunge

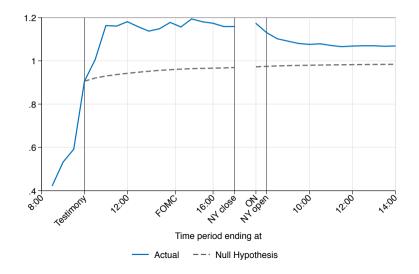
By Julie Rannazzisi Published: Aug 13, 2003 4:37 pm ET



EXCESS VARIATION OVER EACH DAY



HIGH-FREQUENCY VARIATION FOR 10-YEAR YIELD

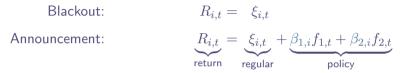


EXCESS VARIATION OVER EACH TESTIMONY DATE

HIGH-FREQUENCY VARIATION FOR 10-YEAR YIELD

INTERPRETING THE TWO POLICY SHOCKS

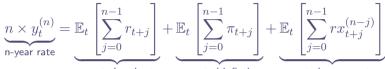
- Two orthogonal dimensions of communication:
 - ▶ Market confidence f_1 : Shift in risk premia that mean reverts over a couple of years
 - ▶ Standard monetary policy f_2 : Shift in the short rate that mean reverts over a couple of years


INTERPRETING THE TWO POLICY SHOCKS

- Two orthogonal dimensions of communication:
 - Market confidence f_1 : Shift in risk premia that mean reverts over a couple of years
 - Standard monetary policy f_2 : Shift in the short rate that mean reverts over a couple of years
- Use other asset classes:
 - Inflation, real rate or term premium
 - Equity market
 - Uncertainty measures
 - Credit markets

IMPACT OF POLICY SHOCKS ON OTHER ASSETS

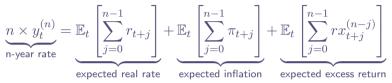
Do other assets also respond to policy shocks?



- Identification: do we observe different covariance of asset returns with the contaminated factors around announcements?
- Operationalize as a regression

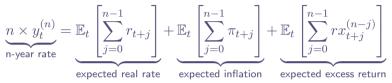
$$R_{i,t} = \alpha_{0,i} + \alpha_{1,i} \mathbb{A}_t + \gamma_{1,i} f_{1,t}^* + \gamma_{2,i} f_{2,t}^*$$
$$+ \beta_{1,i} \left(f_{1,t}^* \times \mathbb{A}_t \right) + \beta_{2,i} \left(f_{2,t}^* \times \mathbb{A}_t \right) + \varepsilon_{i,t}$$

Accounting identity:

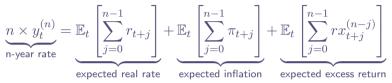

expected real rate

expected inflation

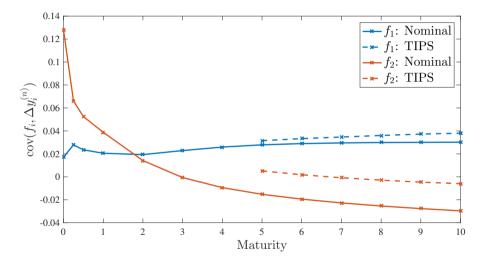
expected excess return


Accounting identity:

Standard monetary policy shock: increase in short rate that mean reverts: large impact on the short end on the yield curve that decays quickly

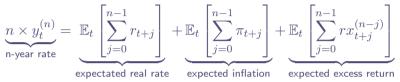

Accounting identity:

- Standard monetary policy shock: increase in short rate that mean reverts: large impact on the short end on the yield curve that decays quickly
- Market confidence shock could be
 - long-lasting impact on future real rate
 - Iong-lasting impact on future inflation
 - long or short-lasting impact on risk premium



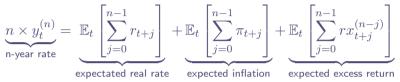
Accounting identity:

- Standard monetary policy shock: increase in short rate that mean reverts: large impact on the short end on the yield curve that decays quickly
- Market confidence shock could be
 - long-lasting impact on future real rate
 - Iong-lasting impact on future inflation
 - long or short-lasting impact on risk premium


Real vs Nominal Rates

REAL RATE, INFLATION, AND RISK PREMIUM

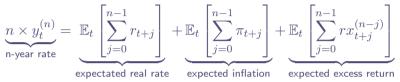
Accounting identity:



- Standard monetary policy shock: increase in short rate that mean reverts: large impact on the short end on the yield curve that decays quickly
- Market confidence shock could be
 - ▶ Forward guidance, long-lasting impact on future real rate
 - long-lasting impact on future inflation X
 - long or short-lasting impact on risk premium

REAL RATE, INFLATION, AND RISK PREMIUM

Accounting identity:



- Standard monetary policy shock: increase in short rate that mean reverts: large impact on the short end on the yield curve that decays quickly
- Market confidence shock could be
 - ▶ Forward guidance, long-lasting impact on future real rate: horizon is too long
 - long-lasting impact on future inflation X
 - long or short-lasting impact on risk premium

REAL RATE, INFLATION, AND RISK PREMIUM

Accounting identity:

- Standard monetary policy shock: increase in short rate that mean reverts: large impact on the short end on the yield curve that decays quickly
- Market confidence shock could be
 - ▶ Forward guidance, long-lasting impact on future real rate X
 - long-lasting impact on future inflation X
 - short-lasting impact on risk premium

	$R_M - r_f$
А	0.33**
A	(0.14)
f_1	0.23***
	(0.08)
f_2	0.00
	(0.02)
f_1A	-0.55**
	(0.28)
f_2A	-0.05
	(0.45)
Observations	3148
R-squared	0.01

EQUITY RETURNS

	$R_M - r_f$
А	0.33**
	(0.14)
f_1	0.23***
	(0.08)
f_2	0.00
	(0.02)
f_1A	-0.55**
	(0.28)
f_2A	-0.05
• -	(0.45)
Observations	3148
R-squared	0.01

 Higher average returns around announcements (Lucca Moench 2015)

	$R_M - r_f$
А	0.33**
	(0.14)
f_1	0.23***
	(0.08)
f_2	0.00
	(0.02)
f_1A	-0.55**
	(0.28)
f_2A	-0.05
	(0.45)
Observations	3148
R-squared	0.01

- Higher average returns around announcements (Lucca Moench 2015)
- Correlation of long-term yields and stock returns:
 - + regular days

	$R_M - r_f$
А	0.33**
	(0.14)
f_1	0.23***
	(0.08)
f_2	0.00
	(0.02)
f_1A	-0.55**
	(0.28)
f_2A	-0.05
	(0.45)
Observations	3148
R-squared	0.01

- Higher average returns around announcements (Lucca Moench 2015)
- Correlation of long-term yields and stock returns:
 - \blacktriangleright + regular days
 - announcements

	$R_M - r_f$	 Higher average returns around announcements
A	0.33** (0.14)	 (Lucca Moench 2015) ■ Correlation of long-term yields and stock returns:
f_1 f_2	0.23*** (0.08) 0.00 (0.02)	 + regular days - announcements
f_1A	-0.55**	Negative effect of confidence shock, no effect
f_2A	(0.28) -0.05 (0.45)	of monetary policy shock
Observations R -squared	3148 0.01	

	$R_M - r_f$	HML	SMB
А	0.33**	-0.10	0.03
	(0.14)	(0.09)	(0.09)
f_1	0.23***	-0.11***	0.17***
	(0.08)	(0.03)	(0.04)
f_2	0.00	0.01	-0.04**
	(0.02)	(0.01)	(0.02)
f_1A	-0.55**	-0.03	-0.19
	(0.28)	(0.16)	(0.18)
f_2A	-0.05	0.43**	0.03
	(0.45)	(0.20)	(0.13)
Observations	3148	3148	3148
R-squared	0.01	0.02	0.01

- Higher average returns around announcements (Lucca Moench 2015)
- Correlation of long-term yields and stock returns:
 - + regular days
 - announcements
- Negative effect of confidence shock, no effect of monetary policy shock

UNCERTAINTY MEASURES

	Δvix	Δvxo	$\Delta smove$	Δepu
A	-3.93***	-2.40***	-1.17**	-49.67***
	(0.80)	(0.82)	(0.52)	(11.55)
f_1	-0.53	-0.89**	1.38***	-4.97
	(0.36)	(0.38)	(0.30)	(3.36)
f_2	0.05	-0.10	-0.78***	3.86***
	(0.11)	(0.12)	(0.11)	(1.29)
f_1A	2.70	2.92*	1.83**	26.86
	(1.74)	(1.76)	(0.92)	(19.87)
f_2A	0.52	1.15	0.82	-15.20*
	(0.70)	(0.82)	(1.10)	(8.96)
Observations	3141	3137	3103	3154
R-squared	0.01	0.01	0.06	0.01

Decrease in confidence increases uncertainty in stock and bond market

UNCERTAINTY MEASURES

	Δvix	Δvxo	$\Delta smove$	Δepu
A	-3.93***	-2.40***	-1.17**	-49.67***
	(0.80)	(0.82)	(0.52)	(11.55)
f_1	-0.53	-0.89**	1.38***	-4.97
	(0.36)	(0.38)	(0.30)	(3.36)
f_2	0.05	-0.10	-0.78***	3.86***
	(0.11)	(0.12)	(0.11)	(1.29)
f_1A	2.70	2.92*	1.83**	26.86
	(1.74)	(1.76)	(0.92)	(19.87)
f_2A	0.52	1.15	0.82	-15.20*
	(0.70)	(0.82)	(1.10)	(8.96)
Observations	3141	3137	3103	3154
R-squared	0.01	0.01	0.06	0.01

Decrease in confidence increases uncertainty in stock and bond market

In the paper: exchange rate, commodities, energy

Recap

- A one standard deviation decrease in market confidence:
 - ▶ Shifts up the real and nominal yield curves by 5bps, even at long maturities
 - Lowers market return by 50bps
 - Increases uncertainty

Recap

- A one standard deviation decrease in market confidence:
 - ▶ Shifts up the real and nominal yield curves by 5bps, even at long maturities
 - Lowers market return by 50bps
 - Increases uncertainty
- Suggests shift in:
 - Uncertainty about the conduct of policy: reputation (Barro 1986), policy rules (Ang et al. 2011)
 - Uncertainty about future economic activity (Romer and Romer 2000)
 - ▶ Appetite for risk/yield (Drechsler et al. 2014, Hanson and Stein 2015)

Recap

- A one standard deviation decrease in market confidence:
 - ▶ Shifts up the real and nominal yield curves by 5bps, even at long maturities
 - Lowers market return by 50bps
 - Increases uncertainty
- Suggests shift in:
 - Uncertainty about the conduct of policy: reputation (Barro 1986), policy rules (Ang et al. 2011)
 - Uncertainty about future economic activity (Romer and Romer 2000)
 - ▶ Appetite for risk/yield (Drechsler et al. 2014, Hanson and Stein 2015)
 - .. not coming from a change in rate

CREDIT MARKET CONDITIONS

More challenging:

- Econometrically
 - less frequent observations
 - slow moving
- Economically
 - \blacktriangleright low confidence \rightarrow low credit supply, low credit demand
 - ► ambiguous price prediction

CREDIT MARKET CONDITIONS

More challenging:		NFCI	FRM rate	Purchases	Refinance
Econometrically	$f_1 A$				
= <u></u>	t-1	0.36	0.89	3.42	1.50
less frequent observations	t-2	(0.32) -0.14	(2.03) 4.19*	(3.95) -5.32	(5.86) -12.93*
slow moving	$\iota - 2$	(0.39)	(2.47)	(3.70)	(6.67)
	$f_2 A$				
Economically	t-1	0.65**	2.52**	2.31	-4.07
low confidence \rightarrow low credit supply,	t-2	(0.29) 0.50***	(1.06) -0.91	(2.06) -7.19***	(4.52) -18.69***
		(0.16)	(1.23)	(2.75)	(5.96)
low credit demand					
ambiguous price prediction	Observations	706	706	706	706
anniguous price prediction	R-squared	0.63	0.23	0.19	0.21

Response to both shocks: cost of mortgages increases, applications drop

CONCLUSION

- Federal Reserve communication has a pervasive impact on asset prices
- Most of it is distinct from conventional monetary policy actions
- More consistent with direct shifts in market confidence
- Another policy tool:
 - Purposeful use?
 - ► How to control it?
 - Theoretical foundations?

